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Abstract : Compressive sensing is an emerging field of research which allows simultaneous sampling and compression of signals at a 

rate below the Nyquist rate by exploiting sparsity of signals. Ripplet transform is a higher dimensional generalization of curvelet 

transform designed to represent images, allows optimal sparse representation of objects with singularities along the smooth curves. In 

this paper we have implemented the application of ripplet transform in compressive sensing of images which proves to offer better results 

than the current state of art techniques using curvelet transform. Here the regularization term used for the reconstruction encompasses 

both local similarity and nonlocal self similarity priors, which further improves the performance.  We have presented the experimental 

results and the comparison with the implementation using curvelet transform. 

 

IndexTerms - Ripplet transform, Compressive sensing, Nonlocal Statistical similarity, Sparsity, Joint adaptive sparsity regularizer  

________________________________________________________________________________________________________ 

 

I. INTRODUCTION 

In signal processing Nyquist sampling has long been seen as the guiding principle of signal acquisition. The theory of compressive 

sensing offers a new framework that allows sampling at a rate lower than Nyquist sampling rate without any significant loss of 

information.The field of CS grew out of the work of Candès, Romberg, and Tao and of Donoho,[1][2][3] who showed that a finite-

dimensional signal having a sparse or compressible representation can be recovered from a small set of linear, non-adaptive 

measurements. 

Compressive sensing is an emerging technology which finds its applications in diverse fields ranging from medical imaging to cyber 

forensics. The basic theory predicts the reconstruction of signals from far fewer samples, by offering a framework for simultaneous 

sampling and compression of finite dimensional vectors, than that is required by Nyquist sampling theorem, thereby contradicting the 

traditional wisdom. The theory of compressive sensing offers the framework of reconstruction of original signal from its random 

projections onto a measurement matrix, provided the signal is sparse in some suitable transform domain.Sparsity plays an important role 

in CS as it is a necessary constraint for acquiring lesser number of samples. 

Compressive sensing of a finite dimensional signal      is done by computing   linear measurements of the image, where     

through following random linear projection  

     

    is the observation/measurement vector and        is the sparse sensing matrix. . Since the number of unknowns are higher 

than the observations the problem of recovery of   from   is considered as ill posed problem. The solution to such ill posed problems can 

be formulated as regularization based optimization problem. If   is sparse in some suitable transform domain, , then it is possible to have 

exact  recovery of   if  the matrix    satisfies the Restricted Isometry Property(RIP). Selection of suitable sparse domain is important. In 

this paper we consider Discrete Ripplet Transform (RT)[11],[12]  as the transform matrix as they provide efficient representation of edges 

in images and are designed to represent images at different scales and directions. 

The solution to the above ill posed problem can be regularized to the following minimization problem by employing prior information 

about the original signal. 

   
 

{
 

 
‖    ‖  

       } 

Here the first term is the   data fidelity term, represents the closeness of the solution to the observed scene and quantifies the prediction 

error with respect to the measurements. The second term represents the a priori information about the original scene.   is a regularization 

term that balance the contribution of both the terms. 

Designing an effective regularization term      to reflect the image prior plays a key role in the quality of reconstructed image. Classical 

regularization terms utilize local structural patterns and are built on the assumption that images are locally smooth except at edges. 

However such terms smear out finer image details. In contrast, nonlocal regularizes can effectively model long range dependencies and 

yield improvement in reconstruction results. The performance of the reconstruction algorithm can greatly improve if the nonlocal self-

similarity and local sparsity prior are both incorporated in a combinational regularization term. 

In this paper we have taken      as Joint Adaptive SpasityRegularisation(JASR) term,  which is capable of characterizing structured 

sparsities of natural image. Finally the resulting optimization problem is solved using Split BregmanIterative(SBI) algorithm 

 

1.1Ripplet Transform 

Efficient representation of images play a key role in image processing tasks. Edges and curves can cause singularities in the image intensity. 

Traditional wavelet system can efficiently represent 1D singularities with minimum number of wavelet coefficients. However they suffer in 

case of higher dimensional singularities due to lack of anisotropic properties. In order to overcome its drawbacks ridgelets and curvelets were 

proposed. 

Ripplet transform is a generalization of curvelet transform. Curvelet transform uses parabolic scaling law to achieve anisotropic property. 

However curvelet transforms can resolve only 2D singularities along    singularities. To address this issue ripplet transform generalizes the 

(1) 

(2) 
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scaling law by adding two parameters support c and degree d. This results in the anisotropy of ripplet functions which guarantees to capture 

singularities along arbitrarily shaped curves. 

Ripplet functions can be represented as 

    ⃗            ⃗⃗   (  (    ⃗ )) 

where    ⃗⃗    is the ripplet element function and    *
        
         

+ is the rotation matrix. 

For digital image processing discrete ripplet transform implementation is used. Scale parameter is sampled at dyadic scale, position 

parameter  ⃗  and angle parameter   are sampled at equal spaced interval, a,  ⃗ , and   are substituted with discrete parameters      
⃗⃗⃗⃗  and    

which satisfy that       ,  
⃗⃗⃗⃗  [          

   ⁄    ]and    
  

 
   ⌊      ⁄  ⌋    

The discrete ripplet transform of M N image          is of form 

    ⃗    ∑ ∑             ⃗          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

   

    

   

    

 

        

where    ⃗    is the ripplet coefficients 

The image can be reconstructed through inverse discrete ripplet transform 

 ̃        ∑∑∑    ⃗   

  ⃗  

    ⃗           

 

II. BACKGROUND 

Due to the drawbacks of basic CS techniques Gan[4] proposed block based compressive sensing(BCS) which is capable of reducing 

memory requirement at the same time speed of reconstruction is still maintained. Motivated by the success of BCS, Eslahi et al. [6] combined 

BCS and iterative curvelet thresholding (ICT) to further improve the performance of the restoration. They compared the performance of two 

accelerated iterative shrinkage techniques, that is, fast iterative shrinkage algorithm (FISTA) and two-step iterative shrinkage algorithm 

(TwIST). Incorporation of prior information of the original signal in the estimation problem can improve the quality of reconstruction. The 

prior knowledge about the image signals can be characterized by local smoothness and nonlocal similarity. Several techniques have been 

proposed for combining local smoothness and nonlocal self similarity into a unified manner[8],[9],[10]. 

 

III. PROPOSED METHODOLOGY 

In this paper we have tried to implement the application of recently developed ripplet transform (RT) in the recovery of compressive 

sensing of images by using ripplet transform as the useful local smoothness regularity prior. Our experimental results has proven to offer 

better performance results when compared with other transform results.  

According to the theory of compressive sensing original signal can be reconstructed from small set of random measurements by finding 

the solution to the ill posed problem using sparsity promoting nonlinear recovery algorithm. The performance of the reconstruction can be 

improved by incorporating the image prior knowledge. In this paper we have tried to incorporate nonlocal sparsity in addition to local 

sparsity constraint in the regularization parameter. The scheme that we have used to enforce both sparsity constraints into the 

regularization term is JASR.  

Mathematically JASR can be expressed as 

                    

Here   is the tradeoff between the local and nonlocal statistical sparsity terms. The first and second terms indicate image local smoothness 

prior and nonlocal self similarity prior. Nonlocal self-similarity characterizes the repetitiveness of the texture or structure in natural 

images within nonlocal area. This can effectively retain sharpness and edges of natural images to maintain image non local consistency.  

The first term corresponds to regularization term that is a measure of sparsity of transform coefficients. 

NSSM characterizes nonlocal self-similarity by means of distribution of transform coefficients by transforming 3D array generated by 

stacking similar image patches. Initially, for an image  , the image is partitioned into   overlapped patches of equal size and then the set 

including the c best matched patches is searched and stacked into a 3D array to form a group. The transform coefficients of each group is 

found by applying 3D transform to the group, followed by arranging them in lexicographic order to form   . The number of non-zero 

coefficients gives the nonlocal 3D sparsity. So NSSM can be mathematically represented as  

 

      ‖  ‖   

Here the 3D transform used in the NSSM is composed of 3Dwavelet transform. 

So the final optimization problem is of form 

   
 

{
 

 
‖    ‖  

           ‖  ‖  } 

The optimization problem is solved using the framework of Split Bregman Iteration (SBI) algorithm [7]. Computation of nonlocal self 

similarity of an image requires estimate of original image, which is computed using Fast Iterative Shrinkage Thresholding (FISTA) 

algorithm [14]. 

 

Algorithms 

TABLE I        

ALGORITHM OF FISTA 

Input:  ,  ,  , B: block size,     : 

maximum iteration number, 

TOL: tolerance. 

Output:  : Reconstructed image; 

(3) 

(4) 

(5) 

(6) 

(8) 

(7) 
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Initialization: Set k = 0;      ; 

    ;   
    

    
repeat 

1.    = smoothing filter(  ); 

2. for each block i do 

 ̂ 
    

  (
    

    
) (  

    
   ) 

 ̂̂ 
   ̂ 

    
 (      ̂ 

 ) 

end for 

3. ̂    ̂̂  

4.              ⁄   
5.         ̂   

6.  ̌       

7. for each block i do 

 ̃ 
     ̌ 

    
 (      ̌ 

 ) 

end for 

Note: Here   
  denotes i

th
 block of    in k

th
 iteration, 

     ̂   denotes hard shrinkage function. 

 

 

TABLE II 

            ALGORITHM OF JASR 

Input:  ,        ,  : inloop iteration number 

    
 

: maximum iteration number, TOL: Tolerance 

Output:   : Recovered image; 

Initialization: Set k = 0;              

          BCS-FICTA       
While a stop criterion is not satisfied do 

1.       ̃     

 ̂             

             

2. for each element of   do 

compute       
    

end for 

3. update      by concatenating all {      
   } 

4. for each patch   
  

 do 

find    
  

, compute    (   
  
) 

end for 

5. arrange all    (   
  
) in lexicographic order to form    

6. update      

7. for i = 1 :    

  
  (               

                     
            ) 

  
      (   (

  
  

  
 

  
  

                 
 
)) 

            
   

  

end for 

8. compute                 ̃  
9. compute                   
10. update       

11.       

end While 

stopping criterion:       
  or          

 

 

IV. EXPERIMENTAL RESULTS 

In this section the performance of the restoration implemented with the ripplet transform is compared with that implemented with 

curvelettansform. The performance of our experiments are evaluated on gray scale test images (       ). All experiments were 

performed using MATLAB 2013a, on a computer equipped Intel® Core(TM) i5-4210U,2.4 GHz processor with 4 GB of RAM and running 

on Windows 8.1. To evaluate the simulation results two quality assessors are, Peak Signal to Noise Ratio (PSNR) and Structural Similarity 

(SSIM) are used.To evaluate the performance the results are compared with that of implementation with curvelet. 
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Table 4.1 shows the comparison of PSNR and SSIM of different images at different measurement ratios along with the comparison with the 

implementation using curvelet transform. 

Fig 4.1 demonstrates the restoration performance of proposed method at different measurement rate. Fig 4.2 shows the comparison of PSNR 

performance of proposed method with that of curvelet implementation. 

 

 
(a)    (b)   (c)           (d) 

Fig 4.1: Restoration of Barbara image using ripplet transform at different measurement ratio (a)MR=0.05 (b)MR=0.1 (c)MR=0.15 

(d)MR=1.2 

 

 
Fig 4.2: Performance comparison of proposed method with that of curvelet implementation. 

 

Table 4.1: Comparison of PSNR and SSIM with curvelet and ripplet transform implementation 

 
 

CONCLUSION 

In this work we have depicted the application of ripplet transform in restoring compressive sensed images. Our results have shown that by 

choosing ripplet transform as the sparsifying domain offers superior reconstruction quality when compared to that of curvelet transfom. 

This work can be extended by incorporating the algorithms that ensure faster reconstruction without compromising the quality of 

reconstruction. 
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